Approximating Subdifferentials by Random Sampling of Gradients

نویسندگان

  • James V. Burke
  • Adrian S. Lewis
  • Michael L. Overton
چکیده

Many interesting real functions on Euclidean space are differentiable almost everywhere. All Lipschitz functions have this property, but so, for example, does the spectral abscissa of a matrix (a non-Lipschitz function). In practice, the gradient is often easy to compute. We investigate to what extent we can approximate the Clarke subdifferential of such a function at some point by calculating the convex hull of some gradients sampled at random nearby points.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Subdifferentials and Applications . I : the Finite Dimensional Theory

We introduce and study a new class of subdifferentials associated with arbitrary functions. Among the questions considered are: connection with other derivative-like objects (e.g. derivatives, convex subdifferentials, generalized gradients of Clarke and derívate containers of Warga), calculus of approximate subdifferentials and applications to analysis of set-valued maps and to optimization. It...

متن کامل

^-representation of Subdifferentials of Directionally Lipschitz Functions

Subdifferentials of convex functions and some regular functions f are expressed in terms of limiting gradients at points in a given dense subset of dorn Vf.

متن کامل

Local Expectation Gradients for Black Box Variational Inference

We introduce local expectation gradients which is a general purpose stochastic variational inference algorithm for constructing stochastic gradients by sampling from the variational distribution. This algorithm divides the problem of estimating the stochastic gradients over multiple variational parameters into smaller sub-tasks so that each sub-task explores intelligently the most relevant part...

متن کامل

Approximating Bayes Estimates by Means of the Tierney Kadane, Importance Sampling and Metropolis-Hastings within Gibbs Methods in the Poisson-Exponential Distribution: A Comparative Study

Here, we work on the problem of point estimation of the parameters of the Poisson-exponential distribution through the Bayesian and maximum likelihood methods based on complete samples. The point Bayes estimates under the symmetric squared error loss (SEL) function are approximated using three methods, namely the Tierney Kadane approximation method, the importance sampling method and the Metrop...

متن کامل

Lecture 2 : Approximating Matrix Multiplication

Approximating the product of two matrices with random sampling or random projection methods is a fundamental operation that is of interest in and of itself as well as since it is used in a critical way as a primitive for many RandNLA algorithms. In this class, we will introduce a basic algorithm; and in this and the next few classes, we will discusses several related methods. Here is the readin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2002